如今,可以在许多电子商务平台上找到自动建议,并且此类建议可以为消费者和提供商创造巨大的价值。但是,通常并非所有推荐的物品都具有相同的利润率,因此,提供商可能会诱使促进最大化其利润的项目。在短期内,消费者可能会接受非最佳建议,但从长远来看,他们可能会失去信任。最终,这导致了设计平衡推荐策略的问题,这些策略既考虑消费者和提供商的价值,并带来持续的业务成功。这项工作提出了一个基于基于代理的建模的仿真框架,旨在帮助提供者探索不同推荐策略的纵向动态。在我们的模型中,消费者代理人收到了提供者的建议,并且建议的质量随着时间的推移影响消费者的信任。我们设计了几种推荐策略,可以使提供商的利润更大,或者对消费者公用事业。我们的模拟表明,一种混合​​策略会增加消费者公用事业的权重,但没有忽略盈利能力,从长远来看会导致累计利润最高。与纯粹的消费者或面向利润的策略相比,这种混合策略的利润增加了约20%。我们还发现,社交媒体可以加强观察到的现象。如果消费者严重依赖社交媒体,最佳战略的累积利润进一步增加。为了确保可重复性并培养未来的研究,我们将公开共享我们的灵活模拟框架。
translated by 谷歌翻译
Deep neural networks (DNNs) are vulnerable to a class of attacks called "backdoor attacks", which create an association between a backdoor trigger and a target label the attacker is interested in exploiting. A backdoored DNN performs well on clean test images, yet persistently predicts an attacker-defined label for any sample in the presence of the backdoor trigger. Although backdoor attacks have been extensively studied in the image domain, there are very few works that explore such attacks in the video domain, and they tend to conclude that image backdoor attacks are less effective in the video domain. In this work, we revisit the traditional backdoor threat model and incorporate additional video-related aspects to that model. We show that poisoned-label image backdoor attacks could be extended temporally in two ways, statically and dynamically, leading to highly effective attacks in the video domain. In addition, we explore natural video backdoors to highlight the seriousness of this vulnerability in the video domain. And, for the first time, we study multi-modal (audiovisual) backdoor attacks against video action recognition models, where we show that attacking a single modality is enough for achieving a high attack success rate.
translated by 谷歌翻译
Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.
translated by 谷歌翻译
Recent advances in Neural Radiance Fields (NeRFs) treat the problem of novel view synthesis as Sparse Radiance Field (SRF) optimization using sparse voxels for efficient and fast rendering (plenoxels,InstantNGP). In order to leverage machine learning and adoption of SRFs as a 3D representation, we present SPARF, a large-scale ShapeNet-based synthetic dataset for novel view synthesis consisting of $\sim$ 17 million images rendered from nearly 40,000 shapes at high resolution (400 X 400 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis and includes more than one million 3D-optimized radiance fields with multiple voxel resolutions. Furthermore, we propose a novel pipeline (SuRFNet) that learns to generate sparse voxel radiance fields from only few views. This is done by using the densely collected SPARF dataset and 3D sparse convolutions. SuRFNet employs partial SRFs from few/one images and a specialized SRF loss to learn to generate high-quality sparse voxel radiance fields that can be rendered from novel views. Our approach achieves state-of-the-art results in the task of unconstrained novel view synthesis based on few views on ShapeNet as compared to recent baselines. The SPARF dataset will be made public with the code and models on the project website https://abdullahamdi.com/sparf/ .
translated by 谷歌翻译
With the recent advances in video and 3D understanding, novel 4D spatio-temporal challenges fusing both concepts have emerged. Towards this direction, the Ego4D Episodic Memory Benchmark proposed a task for Visual Queries with 3D Localization (VQ3D). Given an egocentric video clip and an image crop depicting a query object, the goal is to localize the 3D position of the center of that query object with respect to the camera pose of a query frame. Current methods tackle the problem of VQ3D by lifting the 2D localization results of the sister task Visual Queries with 2D Localization (VQ2D) into a 3D reconstruction. Yet, we point out that the low number of Queries with Poses (QwP) from previous VQ3D methods severally hinders their overall success rate and highlights the need for further effort in 3D modeling to tackle the VQ3D task. In this work, we formalize a pipeline that better entangles 3D multiview geometry with 2D object retrieval from egocentric videos. We estimate more robust camera poses, leading to more successful object queries and substantially improved VQ3D performance. In practice, our method reaches a top-1 overall success rate of 86.36% on the Ego4D Episodic Memory Benchmark VQ3D, a 10x improvement over the previous state-of-the-art. In addition, we provide a complete empirical study highlighting the remaining challenges in VQ3D.
translated by 谷歌翻译
Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to maintain a large-scale model trained on growing annotation sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a neural network effectively learns relevant patterns for new (unseen) classes without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages the extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
translated by 谷歌翻译
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
translated by 谷歌翻译
The existence of label noise imposes significant challenges (e.g., poor generalization) on the training process of deep neural networks (DNN). As a remedy, this paper introduces a permutation layer learning approach termed PermLL to dynamically calibrate the training process of the DNN subject to instance-dependent and instance-independent label noise. The proposed method augments the architecture of a conventional DNN by an instance-dependent permutation layer. This layer is essentially a convex combination of permutation matrices that is dynamically calibrated for each sample. The primary objective of the permutation layer is to correct the loss of noisy samples mitigating the effect of label noise. We provide two variants of PermLL in this paper: one applies the permutation layer to the model's prediction, while the other applies it directly to the given noisy label. In addition, we provide a theoretical comparison between the two variants and show that previous methods can be seen as one of the variants. Finally, we validate PermLL experimentally and show that it achieves state-of-the-art performance on both real and synthetic datasets.
translated by 谷歌翻译
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET
translated by 谷歌翻译
自然语言推论(NLI)是自然语言处理中的热门话题研究,句子之间的矛盾检测是NLI的特殊情况。这被认为是一项困难的NLP任务,当在许多NLP应用程序中添加为组件时,其影响很大,例如问答系统,文本摘要。阿拉伯语是由于其丰富的词汇,语义歧义而检测矛盾的最具挑战性的低资源语言之一。我们创建了一个超过12K句子的数据集并命名为Arnli,这将是公开可用的。此外,我们采用了一种新的模型,该模型受到斯坦福大学矛盾检测的启发,提出了有关英语的解决方案。我们提出了一种方法,以使用矛盾向量与语言模型向量作为机器学习模型的输入来检测阿拉伯语对句子之间的矛盾。我们分析了不同传统的机器学习分类器的结果,并比较了他们在创建的数据集(Arnli)和Pheme,病态的英语数据集的自动翻译上进行了比较。使用随机森林分类器,精度为99%,60%和75%的Pheme,Sick和Arnli的最佳结果。
translated by 谷歌翻译